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Abstract: We use a ten dimensional dual string background to study aspects of the

physics of large N four dimensional SU(N) gauge theory, where its fundamental quarks

are charged under a background electric field. The theory is N = 2 supersymmetric

for vanishing temperature and electric field. We work in a limit where the quarks do

not back-react. At zero temperature, we observe that the electric field induces a phase

transition associated with the dissociation of the mesons into their constituent quarks.

This is an analogue of an insulator-metal transition, since the system goes from being an

insulator with zero current (in the applied field) to a conductor with free charge carriers (the

quarks). At finite temperature this phenomenon persists, and the dissociation transition

becomes subsumed into the more familiar meson melting transition. Here, the dissociation

phenomenon reduces the critical melting temperature.
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1. Introduction

In the series of studies of the dynamics of (non-backreacting) quarks [1] in large N SU(N)

gauge theory using holographically dual [2] geometries in string theory [3 – 6], the non-

perturbative phenomena that can occur in the presence of external electromagnetic fields

have recently become recognized as readily amenable to computation. The case of external

magnetic field at zero temperature was studied in refs. [7, 8], where a number of interesting

phenomena (such as spontaneous symmetry breaking) were readily extracted. There was

also a recent study of quarks at non-zero baryon number density (see refs. [9, 10]) in

the presence of a background electric field, where properties (such as the conductivity) of

the system were uncovered, again using holographic techniques. Very recently, the finite

temperature case of external magnetic field was studied in some detail, with the uncovering

of an interesting phase diagram arising from the competing effects of temperature and

magnetic field [11].

In this paper, we study the same theory (SU(N) gauge theory with non-backreacting

hypermultiplet quark flavours [1]) —an N = 2 supersymmetric theory in its ground state—

in the presence of a background electric field, at both zero and finite temperature.1 Right at

the outset, we might expect very different phase structure than the magnetic case since the

electric field and the finite temperature are working together. The quarks and anti-quarks

that are bound together to make mesons are oppositely charged under the electric field,

and so its presence should serve to reduce that binding energy, making it easier for finite

temperature to shake the mesons apart. This is indeed what we see. Moreover, we can quite

readily identify a sharp first order phase transition even at zero temperature corresponding

1We note that another group will present results in this area in a paper to appear shortly [12].
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to the dissociation of the mesons into their constituent quarks above a critical value of

the electric field. Furthermore, since the mesons are electrically neutral, the dissociation

represents a rather clean example of a “metal-insulator” phase transition, where charge

carriers are liberated, creating a current in response to the applied field.

The paper is organised as follows. In section two we introduce the dual string back-

ground we are going to use throughout the paper and the D7-brane probes that represent

the quarks. By switching on gauge fields of a particular sort on the world-volume, we can

introduce a background electric field. This same gauge field may also source a non-trivial

current in the gauge theory, and we allow for this possibility in our computations. In the

next section we solve the equations of motion that result from our apparatus, and observe

the aforementioned phase structure. In particular, when the dissociated or melted phase is

present, the system has a non-zero result for the response current, representing the flow of

the liberated quarks, the charge carriers. We map out the phase structure of the system in

this section. There is an important subtlety that we observe. At high enough values of the

electric field, some of our solutions for the embeddings of the D7-branes have conical singu-

larities that we can characterize, but do not fully understand. It is a possibility that these

solutions are corrected in the full string theory. However, we believe that their ultimate

fate does not change the phase diagram we present. Until we know conclusively the fate

of these solutions, we are careful to clearly show how they arise and where they lie in the

phase diagram which we uncover. It is to be expected that future work in this area may

yield techniques that can help further refine our embeddings. In section four we observe

some aspects of the meson spectrum of the system, and we briefly conclude in section five.

2. The string background

We consider the following form for the metric of the AdS5-Schwarzschild×S5 background:

ds2/α′ =
1

4r2R2

(

−f
2

f̃
dt2 + f̃d~x2

)

+
R2

r2
dr2 +R2 cos2 θdΩ2

3

+R2dθ2 +R2 sin2 θdφ2 , (2.1)

f = 4r4 − b4 , f̃ = 4r4 + b4 .

The AdS5 time and space coordinates are given by t ≡ x0 and ~x ≡ (x1, x2, x3) respectively

(which the dual gauge theory will also have) and r ∈ [0,∞), which is the AdS radial

coordinate, which we will sometimes denote as x4. We use standard polar coordinates on

the S5, given by:

dΩ2
5 = dθ2 + cos2 θdΩ2

3 + sin2 θdφ2 ,

and dΩ2
3 = dψ2 + cos2 ψdβ + sin2 θdγ2 . (2.2)

The scale R determines the gauge theory ’t Hooft coupling according to R2 = α′
√

g2
YMN .

The parameter b sets the radius of the horizon of the black hole, which in turn sets the

temperature, according to T = b/πR2. The coordinate r is related to the traditional radial
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coordinate u by the coordinate transformation r2 = 1
2

(

u2 +
√
u4 − b4

)

. To proceed, we

consider the action for the probe D7-brane to second order in α′:

SD7

Nf
= SDBI + SWZ

= −TD7

∫

d8ξ det1/2
(

P [Gab] + P [Bab] + 2πα′Fab

)

+
(

2πα′)2 µ7

2

∫

F(2) ∧ F(2) ∧ P
[

C(4)

]

, (2.3)

where P [Gab], P [Bab], and P
[

C(4)

]

are the pullback of the background metric, the B-field,

and the 4-form potential (sourced by the N D3-branes) onto the D7-brane worldvolume

respectively, F is the field strength on the D7-brane worldvolume, and TD7 = µ7/gs. In

order to introduce our background electric field (and current), we consider an ansatz for

the world-volume gauge field of the form [9]:

A1(r) = −Et+B(r) . (2.4)

This ensures a constant electric field F01 = E in the gauge theory; B(r) sources a current J1

on the world-volume [9]. For the D7-brane embedding, we consider an ansatz of the form:

θ ≡ θ(r) . (2.5)

The resulting effective action for the D7-brane is:

SD7 = −TD7Nf

∫

d8ξ
cos3 θ(r)

16r5

[

f̃2f2
(

1 + r2θ′(r)2
)

(2.6)

−4
(

2πα′)2 r4
{

−f2f̃B′(r)2+4f̃2R4E2
(

1+r2θ′(r)2
)

}]1/2
.

It is convenient to define dimensionless quantities r̃, B̃ and Ẽ via:

r = br̃ , B(r) =
b

2πα′ B̃(r̃) , E =
b2

2πα′R2
Ẽ , θ(r) = θ(r̃) ,

which reduces the action to:

SD7 = −2π2V NfTD7b
4

∫

dt

∫

dr̃ L̃ , (2.7)

where L̃ =
cos3 θ(r̃)

16r̃5

[

g̃2
(

g2 − 16r̃4Ẽ2
)

(

1 + r̃2θ′(r̃)2
)

+ 4r̃4g2g̃B̃′(r̃)2
]1/2

,

with g = 4r̃4 − 1 , g̃ = 4r̃4 + 1 .

The equations of motion derived from equation (2.7) for B̃(r) introduces a constant of

motion T̃ . We can invert the equation of motion to write a first order differential equation

for B̃(r) in terms of T̃ :

B̃′(r̃) = −T̃
4r̃g̃

√

(

g2 − 16r̃4Ẽ2
)

(1 + r̃2θ′(r̃)2)

g

√

g̃
(

64r̃6
(

S̃2g2 − T̃ 2g̃2
)

+ g2g̃3 cos6 θ(r̃)
)

. (2.8)
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In the limit of r̃ → ∞, the asymptotic solution for B̃(r) is given by:

lim
r̃→∞

B̃(r̃) = b̃+
T̃

2r̃2
+ . . .

Normalisability of the solution requires us to take b̃ = 0. The constant T̃ is related to the

(vacuum expectation value) vev of the current by the following relation [9]:

〈J1〉 = 〈ψ̄γ1ψ〉 = −4π3α′b3V NfTD7T̃ , (2.9)

where V is the spatial volume of the gauge theory. It is convenient to exchange the fields

B̃(r) for the constant T̃ by performing a Legendre transformation, defining a new action

ĨD7:

ID7 = SD7 −
∫

d8ξ F41
δSD7

δF41

= −2π2V NfTD7b
4

∫

dt

∫

dr̃

(

L̃ − B̃′(r̃)
∂L̃

∂B̃′(r̃)

)

= −2π2V NfTD7b
4

∫

dt

∫

dr̃

[

√

(1 + r̃2θ′(r̃)2)

16r̃5g
√
g̃

×
√

(

g2 − 16r̃4Ẽ2
)(

−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ(r̃)
)

]

= −2π2V NfTD7b
4ĨD7 , (2.10)

where F41 = ∂rA1. It is a simple check to show that δĨD7/δT̃ = B̃′(r̃). The expression

under the square root in equation (2.10) must be positive in order to keep the action real.

Either both terms should be negative or both should be positive, and they must change

sign at the same radial distance r̃∗. This results in two conditions:

(

4r̃4∗ − 1
)2 − 16r̃4∗Ẽ

2 = 0 , (2.11)

− 64r̃6∗T̃
2
(

4r̃4∗ + 1
)2

+
(

4r̃4∗ − 1
)2 (

4r̃4∗ + 1
)3

cos6 θ(r̃∗) = 0 . (2.12)

Equation (2.11) determines r̃∗ in terms of Ẽ:

r̃2∗ =
Ẽ +

√

Ẽ2 + 1

2
, (2.13)

and equation (2.12) yields T̃ in terms of r̃∗, and θ(r̃∗):

T̃ 2 =

(

4r̃4∗ − 1
)2 (

4r̃4∗ + 1
)3

cos6 θ(r̃∗)

64r̃6∗ (4r̃4∗ + 1)2
. (2.14)

Note that equation (2.14) relates the current to the electric field in a form of Ohm’s law,

and this was used in ref. [9] to determine the conductivity of the fundamental matter in

the quark-gluon plasma. We refer to r̃∗ as the “vanishing locus”. From the action ĨD7

defined in equation (2.10), we can derive the equation of motion for the embeddings θ(r̃).
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Its exact form is not illuminating, and so we do not display it here. In the limit of large r̃,

the equation of motion asymptotes to:

d

dr̃

(

r̃5θ′(r̃)
)

+ 3r̃3θ(r̃) = 0 , (2.15)

which has as a solution:

θ(r̃) =
m̃

r̃
+

c̃

r̃3
. (2.16)

The constants m̃ and c̃ are related to the bare quark mass and the condensate respec-

tively, in a manner that is by now very standard [1, 13 – 15]. In our notation, the exact

relationship is given by:

mq =
b m̃

2πα′ , 〈ψ̄ψ〉 = −8π3α′V NfTD7b
3c̃ . (2.17)

3. Properties of the solutions

3.1 Exact results at large mass

It is instructive to study the properties of the quark condensate as a function of the bare

quark mass for large mass. This corresponds to m̃ ≫ Ẽ in terms of the dimensionless

quantities introduced in the previous section. This limit constrains us to consider only

the so-called “Minkowski” embeddings for the probe D7-brane for which the vev of the

current (defined in equation (2.9)) vanishes by virtue of equation (2.14). To extract the

behaviour of quark mass and condensate we linearize the equation of motion obtained from

equation (2.10) in the same way as described in ref. [11]. Rewriting the result in terms of

dimensionful parameters, we find the following analytic behaviour for the condensate:

〈ψ̄ψ〉 ∝ −c =
R4Ê2

4m
+
b8 + 4b4R4Ê2 + 8R8Ê4

96m5
+O

(

1

m7

)

, (3.1)

where Ê = 2πα′E. This may suggest that for high enough bare quark mass, the condensate

vanishes. However unlike the results for an external magnetic field [11], the condensate

approaches zero on the positive side of the condensate axis. We verify these results in the

next section using numerical techniques.

3.2 The case of vanishing temperature

It is instructive to first study the zero temperature case, since a number of important

features appear in this case. For this simple case, the energy scale is set by R
√

Ê, and

therefore it is convenient to introduce the dimensionless quantities r̂ and m̂ via:

r = R
√
E r̂ ; m = R

√
E m̂ . (3.2)

We solve the equation of motion for θ(r̂) using a shooting technique by imposing infrared

boundary conditions described in refs. [15 – 17]. For “Minkowski” embeddings, in order to

avoid a conical singularity at θ = π/2 [17], we impose the following boundary condition:

θ′(r̂)|θ=π/2 = −∞ . (3.3)

– 5 –
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1 2 3 4
r`cosΘ

0.5

1.0

1.5

r`sinΘ

Figure 1: The dashed red curves represent solutions smoothly closing before reaching the vanishing

locus. The solid blue remaining curves correspond to embeddings passing the vanishing locus

(denoted by a semi-circular dashed black curve).

For embeddings reaching the pseudo-horizon we find it numerically convenient to shoot

forward (towards infinity) and backward (towards the origin) from the vanishing locus

r̂∗ = 1. The boundary condition ensuring the smoothness of solutions across the vanishing

locus can be determined from the equation of motion itself, and it is found to be:

θ′(r̂∗) =
∂û

∂r̂

∂θ

∂û
; θ0 ≡ θ(r̂∗); (3.4)

∂θ

∂û
= − 1

û
tan

θ0
2

∣

∣

∣

∣

û(r̂∗)

.

From the above boundary condition we can see that the embeddings reaching the vanishing

locus at θ = π/2 avoids the conical singularity by having a diverging derivative. Next we

proceed to discuss our numerical findings.

Numerical analysis shows that there are three different classes of embeddings, which

can be classified by the topology of the probe D7-brane. First, we have the smooth

“Minkowski” embeddings that close above the vanishing locus, due to the shrinking of

the S3 that the probe brane wraps. Second, we have the embeddings that reach the van-

ishing locus before the S3 shrinks. These embeddings can in turn be classified into two

different categories. The first are singular solutions that cross the vanishing locus and close

before reaching the origin. These have a conical singularity at the closing point because

the derivative does not diverge. We discuss these solutions further below. The second

are smooth solutions that pass through the vanishing locus and reach the origin with no

singular behaviour. These different embeddings are summarized in figures 1 and 2. We

can see explicitly the conical singularity appearing for the brane (second curve in figure 2)

since it intersects the vertical axis before reaching the event horizon. This class of sin-

gular solutions starts appearing after a certain value of θ0 = (θ0)min that depends on the

magnitude of the electric field; this value is close to π/2 (which corresponds to the critical

embedding), and the singular solution persists until θ0 = π/2.

The existence of these embeddings suggests the possibility of a transition in topology

of the probe brane as a function of the bare quark mass, as is well known to exist at finite

temperature. Here, the external electric field alone induces the transition. The Minkowski

– 6 –
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r`cosΘ

0.2
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0.6

0.8

1.0

r`sinΘ

-1.0 -0.5 0.5 1.0
r`cosΘ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r`sinΘ

Figure 2: Two kinds of embeddings that pass the vanishing locus corresponding to D7-brane

closing at the origin (left), and forming a conical singularity (right) respectively. The semi-circular

dashed (black) curve corresponds to the vanishing locus.

m` *
=1.242

Θ0 min

m` cr=1.328

Θ0 cr

0.5 1.0 1.5 2.0 2.5 3.0
m`

0.1

0.2

0.3

0.4
-c`Hm` L

m
!

cr"1.328

1.315 1.320 1.325 1.330 1.335 1.340
m
!

0.22

0.23

0.24

0.25

0.26

#c
!

!m
!

"

Figure 3: The condensate as a function of bare quark mass m̂. The curve segment coming in

from the left (solid blue) corresponds to embeddings reaching the vanishing locus, and the curve

segments going out to the right (dashed red) correspond to Minkowski embeddings. There is a

family of solutions that contain a conical singularity between the vanishing locus and the origin.

They exist for (θ0)min < θ0 < (θ0)cr. On the right is a magnification of the turn-around region where

these segments join, showing multi-valuedness. Since it has been a good guide in earlier work [15],

we use an equal-area law argument to determine the presence of a first order phase transition at

m̂cr where there is a jump from one type of embedding to another.

embeddings simply have a shrinking S3, while the embeddings reaching the origin are distin-

guished by having an S3 shrinking as well as touching the AdS horizon. However the pres-

ence of singular solutions makes the nature of the transition subtle, as we discuss later. We

later see that the finite temperature case also shares a similar classification of embeddings.

From the asymptotic behaviour of these embeddings we can extract the condensate

as a function of the bare quark mass. In figure 3 we show this dependence. There are

two important mass scales. One is where the phase transition between the two types of

embedding occurs, which we label m̂cr, and the other is where the singular solutions first

appear, which we label m̂∗. These values are in turn determined by the parameters (θ0)cr
and (θ0)min, respectively.

In figure 3, the multi-valuedness is indicative of a phase transition, as was speculated

earlier based on the general arguments. Furthermore we observe that there is no chiral

– 7 –
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symmetry breaking, since in all cases the condensate vanishes for vanishing mass. This is

to be contrasted with the case of having an external magnetic field where chiral symmetry

breaking is observed [11].

The latter observation fits our intuition that the mesons in this theory have a binding

energy that is proportional to the constituent quark mass [13]. For a given quark mass,

the introduction of an electric field reduces the binding energy of the quarks. This causes

two things to happen: First, it inhibits the formation of a chiral condensate, and second, it

ultimately dissociates the mesons into its constituent quarks. This dissociation is in fact a

transition from an insulating to a conducting phase, mediated by the external electric field.

On the dual gravity side this corresponds to a transition from Minkowski embeddings to

embeddings that reach the origin.

We must note that the appearance of the singular solutions (those that have a conical

singularity) are not well understood at the moment. There is therefore the possibility that

there is as yet not identified intermediate phase right after the mesons dissociate. We can

make our dissociation transition explicit. From equation (3.2) we can deduce the exact

dependence of m∗ and mcr on the electric field Ê as m∗ = R
√

Ê m̂∗ and mcr = R
√

Ê m̂cr.

The latter is the value of the critical mass for a given electric field. Using an equal-area law

(see ref. [15]),2 we can also independently (as a test of our methods for later) determine

this dependence numerically for our solutions, and we display this in figure 4. We also

include the critical mass for which the singular solutions appear as a function of the field.

We see that the analytic behaviour deduced above is nicely confirmed by the numerics.

Indeed the singular solutions seem to be unavoidable in the phase diagram (at least at the

level of our analysis). However they seem to lie very close to the dissociation transition

and, in the limits Ê → 0 and Ê → ∞, the two curves tend to merge.

Presently we do not completely understand the role played by the singular solutions

in the physics. One simple possibility (but not the only one) is that stringy corrections

smooth out the singularity in the interior, while preserving the asymptotic behaviour. This

would mean that we have a simpler phase diagram than that in figure 4 (i.e., with no dashed

line). In fact, a study of the meson spectrum appears to hint at the fact that the gauge

theory is actually “blind” to the physics below the vanishing locus, at least for the type of

questions we are asking. We elaborate on this in section 4.

We next turn to the finite temperature case. It is worth noting that a simple check

of our results in the next section is that the large electric field (compared to temperature)

limit, should recover the physics that we have seen here, and indeed it does.

3.3 The case of finite temperature

In order to proceed, we again solve the equation of motion for θ(r̃) numerically using

Mathematica. We use a similar shooting technique and boundary conditions outlined in

the previous section. For Minkowski embeddings we impose equation (3.3). For black hole

2It would be interesting to explore comparing the results of the equal-area prescription with the results

of the thermodynamic potential computation using an appropriate brane probe action (DBI supplemented

with terms corresponding to the response to the external fields.). This we will leave to a future project.
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E0.0

0.5

1.0

1.5

2.0

2.5

1!mcr

Figure 4: The phase diagram showing the electric field induced first order phase transition sepa-

rating the dissociated phase from the phase with stable mesons. The blue (solid) curve separates

the phases. The region within the blue (solid) curve and red (dashed) curve represents the region

where the embeddings with a conical singularity become thermodynamically relevant. Note that

mcr has units of R and Ê is dimensionless.

0.5 1.0 1.5 2.0 2.5 3.0
r� cos Θ

0.5

1.0

1.5

r� sin Θ

Figure 5: Several solutions for classical D7-brane embeddings with Ẽ = 1. The inner semi-circle

corresponds to the event horizon, and the outer semi-circle corresponds to the vanishing locus.

embeddings, the appropriate initial condition to ensure smoothness of the embedding when

we stitch the solutions across r̃∗ is:

θ′(r̃∗) =
∂ũ

∂r̃

∂θ

∂ũ
, θ0 ≡ θ(r̃∗) , (3.5)

∂θ

∂ũ
=

(3ũ4 − 1) −
√

(3ũ4 − 1)2 + 9ũ4(ũ4 − 1) tan2 θ0
3ũ(ũ4 − 1) tan θ0

|ũ(r̃∗) .

We show several solutions for Ẽ = 1 in figure 5. We can extract from these embeddings

the condensate c̃ as a function of the bare quark mass m̃ by analyzing the asymptotic

behavior of the solutions. We show several of these solutions for various dimensionless

electric field values in figure 6. The first order phase transition described in refs. [14, 15]

– 9 –
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m�

0.05

0.10

0.15

0.20

0.25

0.30

0.35
-c�Hm� L

Figure 6: The condensate as a function of bare quark mass for increasing electric field. From

bottom to top, the electric field values are Ẽ = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9.

persists in the presence of an electric field. We determine the critical mass at which this

transition occurs using an equal-area law described in ref. [15], and we present the phase

diagram in figure 7. The numerical results confirm our intuition: at zero temperature,

the mass of the meson is proportional to the bare quark mass, and hence the binding

energy is proportional to the bare quark mass [13]. Turning on an electric field decreases

the binding energy (the electric field will pull the quark-antiquark pairs apart), and only

mesons built out of sufficiently heavy quarks-i.e. above a critical mass-will survive. At

finite temperature, we can think of the increasing of the critical mass as equivalent to

the decreasing of the critical temperature. Therefore, lowering the binding energy causes

mesons to melt at lower critical temperatures. In addition, since c̃ = c/b3, the magnitude

of the dimensionless condensate increases with decreasing critical temperature (as we see

in figure 6). Furthermore, the stronger the electric field, the more initial binding energy is

required and therefore a higher critical mass is needed.

We can deduce the asymptotic behavior of the phase diagram by considering large

electric fields. The dominant energy scale is set by the electric field, and therefore in that

limit we are effectively at zero temperature. To see this, one should note that the energy

scale in the geometry is set by r∗, and for strong electric field, r∗ is much larger than the

position of the event horizon. Therefore, we should expect to reproduce the results for

pure AdS5 × S5 in an external electric field described in the previous section. In the case

of pure AdS5 ×S5 in an external electric field, the only energy scale is given by R
√
E, and

therefore we can easily show that the bare quark mass and condensate scale as:

m ∝ R
√
E ,

c ∝ R3E3/2 . (3.6)

This result suggests that:

1/m̃crit ∝ 1/
√

Ẽ . (3.7)
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Figure 7: The phase diagram depicting the first order phase transition, denoted by a heavy line

(blue) that separates the melted and stable meson phase. The thin black curve is the best fit curve

given by const.× Ẽ−1/2 for large electric field.

Figure 8: For zero electric field and finite temperature, the Minkowski and black hole solutions

are separated by a “critical” embedding, which has conical singularity at the event horizon.

This dependence was checked numerically (and shown in figure 7) and appear to be valid

for Ẽ > 2. It is instructive to compare the phase transition to the one for zero electric field

and finite temperature. In the latter case the Minkowski and black hole embeddings are

separated by a “critical” embedding with a conical singularity at the event horizon as shown

in figure 8 . The straightforward generalization of this picture to the case of finite electric

field suggests the existence of a “critical” embedding with a conical singularity at the

vanishing locus (r = r∗). However, similarly to the zero temperature case, a more detailed

study of the transition from Minkowski to black hole embeddings reveals an interesting

third class of embeddings. These are embeddings which enter the vanishing locus at r∗,

and have a conical singularity above the event horizon. See figure 9. These solutions

correspond to embeddings which enter the vanishing locus at θ0 close to π/2. Such solutions

extend from θ0 = π/2 to some minimal value (θ0)min, below which the embeddings have no
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Figure 9: For a finite electric field there are two “critical” solutions corresponding to embeddings

with a conical singularity at the vanishing locus (r = r∗) and at the event horizon respectively.

The intermediate solutions correspond to black hole embeddings, which have a conical singularity

between the event horizon and the vanishing locus.

conical singularity and simply fall into the black hole. In figure 11 one can see examples

of embedding for different values of θ0. Finite temperature adds richness to the picture

by adding the possibility that these singular solutions may or may not be bypassed by the

otherwise melting transition induced by temperature. This depends entirely on the value of

the electric field for a given temperature, and for sufficiently high electric field the singular

solutions appears unavoidable (at least at this level of analysis — as mentioned earlier, there

may well be stringy corrections to the conical geometry in the interior). Summarizing the

two possible scenarios mentioned above, we have:

1. For sufficiently weak electric field or large temperature (Ẽ < Ẽcr) the (θ0)min em-

bedding is in the vicinity of the “critical” (θ0 = π/2) embedding and is bypassed by

the phase transition. The thermodynamically stable phases correspond to smooth

Minkowski and black hole embeddings on the gravity side or meson gas and quark

gluon plasma states in the dual gauge theory.

2. For Ẽ > Ẽcr the (θ0)min embedding is thermodynamically stable and corresponds

to some bare quark mass m̃∗ < m̃cr. This means that some of the classically stable

black hole solutions, namely the one corresponding to bare quark mass in the range

m̃∗ < m̃ < m̃cr, will have a conical singularity.

There is an example of each such scenario in figure 10. This suggests a richer structure

for the phase diagram than the one presented in figure 7 and in particular the existence of

a special point at Ẽ = Ẽcr and m̃cr(Ẽcr). The corresponding phase diagram is presented

in figure 12. The new choice of dimensionless variables on the axes is made in order to

emphasize the existence of the non-smooth (i.e., conically singular) black hole embeddings.

The solid curve corresponds to the phase curve from figure 7 (but note that the axes are

different here, and hence the shape) and the dashed curve separates embeddings with a

conical singularity from smooth black hole embeddings (that lie below it). The area above

the solid curve is in the stable meson phase and the area below the dashed curve is in the

melted/dissociated phase. The area between the curves corresponds to the embeddings

that have a conical singularity before ending on the horizon. The vertical dashed line
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Figure 10: The physical scenarios described in the text for (left) Ẽ < Ẽcr and (right) Ẽ > Ẽcr. To

the left, we have (θ0)cr < (θ0)min, so the phase transition bypasses the singular branch of solutions.

To the right, we have (θ0)cr > (θ0)min, so the singular solutions appear on the resulting phase

diagram. Further discussion is available in the text.

corresponds to the critical value Ẽcr ≈ 1.26, below which the conical solutions are not part

of the energetically favourable solutions and so do not complicate the story. In order to

relate the results in figure 12 to those of the zero temperature case, we first note that the

T = 0 dimensionless variable m̂ can be related to the finite T variable m̃ via:

m̂ =
m

R
√
E

= lim
T→0

m̃
√

Ẽ
. (3.8)

In addition, if Ê = b2Ẽ/R2 is to remain finite as b → 0, Ẽ must go to infinity. Therefore,

the T → 0 limit corresponds to studying Ẽ → ∞ in figure 12. We see that the phase curves

from figure 12 qualitatively approach the zero temperature (large electric field) case of the

previous section, with the critical parameters m̂∗ ≈ 1.22 and m̂cr ≈ 1.32.

4. Meson spectroscopy

We end by making some observations about the meson spectrum. To proceed in studying

the meson spectrum, we first absorb our gauge field into the B field to emphasize that

it is of the same order in α′ at the classical level of our Dirac-Born-Infeld action. This

simplifies our notation since Aµ now denotes the second order in α′ gauge field. To study

the meson spectrum, we need to consider quadratic (in α′) fluctuations about our classical
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Figure 11: Examples of D7-brane embeddings for θ0 > (θ0)min, θ0 = (θ0)min and θ0 < (θ0)min

respectively. The inner semi-circular segments represent the event horizon, while the outer semi-

circular arcs correspond to the vanishing locus at r = r∗. The numerical value of the minimal angle

is (θ0)min
≈ 1.345 and the parameter Ẽ = 3.

embeddings for the D7-branes [1]. To this goal, the relevant pieces of the action are:

S = −T7

gs

∫

d8ξ
√

gab +Bab + 2πα′Fab +
(

2πα′)µ7

∫

M8

F(2) ∧B(2) ∧ P
[

C̃(4)

]

+
(

2πα′)2 µ7
1

2

∫

M8

F(2) ∧ F(2) ∧ P
[

C(4)

]

, (4.1)

where

C(4) =
1

gs

u4

R4
dt ∧ dx1 ∧ dx2 ∧ dx3 ,

C̃(4) = −R
4

gs

(

1 − cos4 θ
)

sinψ cosψ dψ ∧ dα ∧ dβ ∧ dφ .

To study the quadratic fluctuations, we consider an expansion for the transverse fields of

the form:

θ = θ0(r) + 2πα′χ(ξa) , (4.2)
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Figure 12: The solid curve correspond to the phase curve from figure 7 and the dashed curve

separates embeddings with a conical singularity from smooth black-hole embeddings. The area

above the solid curve is in the meson gas phase and the area below the dashed curve is in the quark-

gluon plasma phase. The area between the solid and dashed curves corresponds to embeddings which

reach the black hole horizon but have a conical singularity before reaching the event horizon. Their

physical status remains to be determined but may be irrelevant for this particular phase diagram

(see text). The vertical dashed line corresponds to the critical value Ẽcr ≈ 1.26 where the conical

solutions become thermodynamically relevant.

φ = 0 + 2πα′Φ(ξa) , (4.3)

where θ0 is the classical embedding found in previous sections. Expanding the action

in equation (4.1) to second order in 2πα′, we find the relevant terms for our fluctuation

analysis are:

−Lχ2 =
1

2

√
−EEabGθθ∂aχ∂bχ− 1

2

√
−EEabθ′2G2

θθE
uu∂aχ∂bχ

+
1

2
χ2
[

∂2
θ

√
−E − ∂u

(

θ′GθθE
uu∂θ

√
−E
)]

, (4.4)

−LΦ2 =
1

2

√
−EGΦΦE

ab∂aΦ∂bΦ , (4.5)

−LF 2 = −1

4

√
−ESabScdFbcFda , (4.6)

−LF−χ =
1

2
χFab

[

R2∂u

(√
−Eθ′EuuJab

)

− Jab∂θ

√
−E
]

, (4.7)

LWZ
F−Φ = −4R4 cos3 θ sin θ sinψ cosψB01F23Φ , (4.8)

LWZ
F−F =

u4

8R4
FmnFopǫ

mnop . (4.9)

Here Eab = gab + Bab, where gab is the induced metric at the classical level. G will be

reserved for the space-time metric. In addition, we use that Eab = Sab + Jab, where
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Sab = Sba and Jab = −Jba. The indices a, b, c, d range over the worldvolume coordinates,

and the indices m,n, o, p range over the directions 4, 5, 6, 7. We have reverted to using the

coordinate u instead of r since the equations are simpler in this coordinate. The equations

of motion derived from these Lagrangian terms allow us to consistently take A1(t, u) 6= 0,

A4(t, u) 6= 0, and the remaining gauge fields to be zero. This implies that the field χ is

coupled to A1 and A4, whereas the field Φ decouples from the gauge fields. Let us begin

by studying the spectrum for the zero temperature case. For simplicity, we consider fluc-

tuations about the θ = 0 embedding, in which case, the field χ decouples from the gauge

field. We consider an ansatz of the form:

χ ≡ χ
(

û, t̂
)

= ξ(û)eiω̂t̂ , (4.10)

where û = uR
√

Ê, t̂ = t
√

Ê/R, and ω̂ = ωR/
√

Ê are dimensionless quantities. We would

like to focus our attention to the equation of motion near the vanishing locus, in this case,

at û = û∗ = 1. The equation of motion has the form:

ξ′′(û) +
1

û− û∗

(

1 − i
ω̂√
6

)

ξ′(û) +
1

û− û∗

(

1

2
+ i

ω̂√
6

+
5ω̂2

12

)

ξ(ũ) = 0 . (4.11)

We emphasize that this equation assumes that T̃ is positive. We find that this equation

satisfies an ingoing wave solution of the form:

ξ(û) = (û− û∗)
−iω̂/

√
6 ζ (û) , (4.12)

The outgoing wave solution corresponds to simply taking the complex conjugate of the

ingoing wave solution:

χout = χ∗
in . (4.13)

In examples involving string worldsheets [18, 19], such behavior was interpreted as an effec-

tive horizon for the worldsheet, and only the ingoing wave solution was considered physical.

Here, the ingoing solution implies that embeddings that touch the vanishing locus must

fall towards the event horizon. This is simply the statement that the conducting phase

can only be associated with black hole embeddings. We emphasize that the situation here

is not exactly the same as in ref. [18, 19]; the vanishing locus does not correspond to the

horizon of the induced D7-brane metric. However, there are indications that the gauge

theory only sees the physics up to the vanishing locus. The current T̃ is defined at ũ∗; the

asymptotic behavior of the branes can be solved for by imposing initial conditions at ũ∗,

so the bare quark mass and condensate can be identified without having to solve for the

embedding up to the event horizon. From our results above, the same holds true for the

meson spectrum. Therefore, one may be tempted to interpret the vanishing locus as an

effective horizon; however, Ramond-Ramond (RR) charge conservation on the D7-brane

requires us to continue the embedding up to the physical event horizon. Perhaps for the

questions we are asking, the gauge theory is ignorant of the physics inside the vanishing

locus, and hence the conical singularities we have encountered and their resolution do not

alter the phase diagrams we have presented.
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Therefore, let us proceed and check the behavior of the fluctuations for the T 6= 0

case. For the same ansatz as before, near the vanishing locus, we again find ingoing wave

solutions of the form:

ξ(ũ) = (ũ− ũ∗)
−iaω̃ ζ(ũ) , (4.14)

where ũ = u/b, t̃ = bt/R2, ω̃ = R2ω/b, and a =

√
4+10Ẽ2+6Ẽ4

2ũ∗(2+3Ẽ2)
. ũ∗ determines the position

of the vanishing locus and is given by
4
√

1 + Ẽ2. Therefore, we find that the solution

becomes exactly the incoming-wave quasinormal mode solution studied elsewhere [20 –

22, 15]. Therefore, this result confirms that we still have a “melted” phase for the mesons

corresponding to black hole embeddings.

5. Conclusions

It is very encouraging that non-trivial non-perturbative phenomena resulting from external

fields such as those we have seen here (a dissociation phase transition, metal-insulator

transition and the associated response current) can be so readily extracted in this kind of

holographic study. We found that since the electric field works together with the presence

of finite temperature, the resulting phase diagram which accounts for the effects of both

is rather simple (ignoring the complication of the special conical solutions —see below).

This paper is a natural companion to our recent work [11] on the same system in an

external magnetic field, where we mapped out somewhat richer phase structure, seeing

how magnetically induced spontaneous chiral symmetry breaking (studied in this context

in ref. [7]) and the meson melting fit together in the diagram.

Clearly, the story is not quite complete in this electric case, since above a certain

value of the electric field, some of our solutions develop conical singularities in the interior.

We would like to know more about the nature of these solutions. As already stated,

one possibility is that the solutions are locally (near the singularity) corrected by stringy

physics, perhaps smoothing the conical points into throats that connect to the horizon.

We would expect in that case that our phase diagram would largely remain intact, since

the values of the masses and condensates for each solution are read off at infinity, far from

where the conical singularity develops. The results for the relative free energies of those

solution (compared to the other solutions at the same values of the mass) would be the

same, and so the complete story would be unaffected. Furthermore as noted in section 4,

key aspects of the meson spectrum lend support to the idea that the phase diagram is

insensitive to the local details of the conically singular features. It would be of value to

find methods for making this indication more robust.
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